IBM SPSS Modeler Foundations on IBM Cloud Pak for Data (V2.5.x) eLearning – 6X234GWBT

image_pdfCourse Outline PDF

Enrol   Details


Course Code: 6X234G Brand: IBM Cloud Pak for Data Category: Analytics Skill Level: Intermediate Duration: 6H Modality:WBT      Audience


Clients who are new to IBM SPSS Modeler on IBM Cloud Pak for Data or who want to find out more about using it.

  Prerequisites


Knowledge of your business requirements.

  Short Summary


This course teaches how to use the IBM SPSS Modeler on IBM Cloud Pak for Data V2.5.  Overview


SPSS Modeler is available on IBM Cloud Pak for Data V2.5. This course reviews the basics of how to import, explore, and prepare data, and introduces the student to machine learning models with SPSS Modeler on Cloud Pak for Data.

  Topic


Introduction to SPSS Modeler on IBM Cloud Pak for Data • Introduction to data science • Describe the CRISP-DM methodology • Introduction to SPSS Modeler • Build models and apply them to new data Import and explore the data • Describe key terms in working with data • Import and export data • Audit the data • Define missing values Integrate data • Identify the unit of analysis • Remove duplicate records and aggregate data • Append and merge datasets • Append and merge datasets with incomplete data Transform fields • Use the Control Language for Expression Manipulation • Derive fields • Use functions • Reclassify fields Identify relationships • Overview of the nodes to use • Explore the relationship between two categorical fields • Explore the relationship between a categorical field and a continuous field • Explore the relationship between two continuous fields Introduction to Modeling • Identify three types of machine learning models • Identify three types of supervised models • Identify unsupervised models • Deploy machine learning models

  Objectives


• Introduction to SPSS Modeler on IBM Cloud Pak for Data • Import and explore the data • Integrate data • Transform fields • Identify relationships • Introduction to Modeling

Tags :
Call Now +27 12 023 1959